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(THE CASE OF INTERACTING PARTICLES)

?wAYu.:A;iRylov<

ABSTRACT: It is shown that non-relativistic quantum mechanlcs
of two particles interacting with an external electromagnetic
field and with each other can be considered as the statistics
of two-dimensional surfaces representing the state of the
system consisting of two non-deterministic particles in
eight-dimensional space, which is the direct product of the
space-times for each particle.

_ The concept advanced in [1, 2] 1s applled in this work to the case of two
partlcles interacting with an electromagnetlc f1e1d and with each other!

Quantum mechanics [1, 2] ista form of relativistic statistics. It will be shown
in this work, in pariicular, that the quantum mechanics of two interacting
o ;particles can be represented as the statistics of two-dimensional surfaces rep-
;fé§éﬁtiﬁ§“fﬁé‘riéiifégtofttwu'particlés‘iﬁJeight-diménSiohal'space V,,» which

is the direct product of the space-time V1 and V2;for each particle.
i : We will formulate the fundamental concept. Classical particles3 presumably
interact non-relativistically with the environment (space). Consequently their
behavior becomes non-deterministic and unpredictable. The behavior of particles
can be described only statistically. The statistical principle [2] is used for

‘this purpose. With the aid of this principle a deterministic system — . 0

“*Numbers in the margin indicate pagination in the foreign text.

5 “ 1A bibliography and review of works on interpretation of quantum mechanics from
‘the viewpoint of classical mechanics can be found in [3].

2Two different concepts of the state of the system are used in the work. The
‘n-state (non-relativistic state) is defined at a given moment of time. Evolu-
‘tion of the n-state is described by equatlons of motion. The n-state of a
partlcle is 1ts coordlnates and pulse.

. 3The r-state (relativistic state) is defined in the entire space-time. The
‘r-state obeys certain equations, which act as restrictions imposed on the
permissible r-states? The r-states of a particle is the equation of its world
line qi = qi(1r). See [1] for greater detail.

' 3particles are classical in the sense that the motion of each of them can be de-
.scribed by the world line in the. space-time. :
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_statistical| set — can be made to correspond to the non-deterministic system.

:The relation between the statistic¢al set and corresponding non-deterministic

§§ystem is established on the basis of the following two properties.

t

|

1. The state of a set is the density of the state of the systems compris-

ing it.

2. Any additive value ascribed to the set as a dynamic system (energy,

‘motion, etc.) is (with the appropriate standardization of the set) the mean

jvalue for the systems comprising the set.

It turns out that it is possible to select the Lagrangian for a statistical

set, such that the description in the non-relativistic limit will be equivalent

'to the quantum mechanics description. In order to achieve equivalent with

fquantﬁm mechanics it is important that the particles be described with the aid

;of the relativistic concept of state (r—State).

I. ‘Statistical Set for Two Particles in Electromagnetic Field

We will discuss a system consisting two partlcles The r-state of the

elghth particle is described by the world line LA : qA = qA (T ), i=20,1, 2,

-3, A =1, 2 in space-time Va (qA [i =0, 1, 2, 3] are the coordinates in space

capsule VA). The r-state of a system of two particles is described by two-

12 1

' _dimensional surface S = L QwLZ in eighf-dimensional space V,, =V, 8 V,.

' The symbol 8 denotes the direct product.

We introducé the coordinates ©® (a =1, 2, ...8) in V

- : x 12°

= qp=q', a=a@-1 il (1.1)

'

I

In the ensuing discussion we will use, in addition to tensorial indices a, b,...

"the double index (;). The correspondence between them is established by the

relation

a=4 (A-1)+1i+1, (1.2)

a=1,2, ...8,i=0,1,2,3 A=1, 2

Tver



" Summation-is done in terms a, b,... from 1 to 8 and in terms of i, j,... from

!
0 to 3 according to the recurrence of Latln tensorlal indices, |and from 1 to 3
accordlng to the Greek indices. Summatlon in terms of the capital indices,

1nd1cat1ng'the number of the partlcle is_always denoted by the summation
symbol

As shown in [2], the den51ty of surfaces of state S in the vicinity of

'point x of. space V12 is determined by skew-symmetric tensor j b(x)' In the
case at hand, when S = L, 8 L2,
2 i, K iy K »
M @=3G) G)=0,4,K=0,1, 2,3, (1.3)
0 f‘ According to the statistical..principle [2]; the density j ab of surfaces of

state S is the state of a statistical set of two-particle systems. We will call
. this set a quantum set. In the case when the particles interact on}y with an

external electromagnetic field, the action for it can be written in the form

S = scl + squ, : (1.4)
4 |
()b (e
A A - ,
SCl = l[J » pa, " ] "S { 2 mA J Tlg J nc - » (1.5)
1 sj(A) d nd
i, b
- parb(j2® o7 W A } s C
e am) T ) oA, (g} 8(u - C)dx,
N nz )
- a b A
3j (A)b dj (A)C
. 2 , -
‘ R ‘U. RS mb- o ic
s =5 [ -ab] - - Z R g - 2, 7 8
s Tqu T el J - &M, Q)4 6(n - Qd'x, (1.7)
A=l ] nd
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m(tl’ tz): tl = q1: qu {CFA’ qA’ qA’ qA}'

L n =C = const is to a ceftain extent an arbitrary 7-dimensional surface
SO ; . . . ' . . B
“ in space V&Z’ in terms of which 1ntegratlop is done. The values Jab, a, ga,

|

;B =1, 2,...2S are the variables to be changéd, e,s M, are the charge and mass,

(=R

- respectively, of the A-th.particle and ¢ is the velocity of light:

[
g

- 2B-1 2B-1 32B-1 2B 2B 32B
; < S 8("” g 3 g ] % 3 n’ g ,g 2 g )
- j = :E: 1 2 3 1> 20 5 ) (1.8)
S B=1 1 2 3 4w 5 '6 7 8
’ 30X ™ X 5 X 5 X 53X s X s X s X))
_ 9T _ an
Ol T = T g ? “.En :-f‘-,_f
4,.;‘ ‘ axa 3Xb

i B

is the partial derivative of J in terms of T and ny for fixed ga,a

.- 3B
= Bgu/axa.

A(i) (qA) is the fore-potential of the external electromagnetic
A .

field in space VA. Since the electromagnetic field is external

Ay @ = A(%) @ = 4; (@, 1.9) /9

;l (.J

‘ ji.e., the form of functions A .  and A(i) is identical and they depend on dif-
- 2 .

' ferent arguments in accordance with the fact that they pertain to different

llspaces VA.

jab, as we already mentioned, is the density of surfaces of state S, /

Sep = p(i)(x) is the canonical pulse; i;é., the mean of canonical pulse P;
A



ﬂof the A-th parficle at‘poiﬁt x. Formally P, is the Lagrange factor, intro-
%ducing the definition
At ’ ab_ 0

= : '.:{ ’nbr‘ 'aTa‘ (1.10)

It should be borne in mind that expre551on (1.6) for action S o1 can be

derlved from theaaction for two particles in the external magnetic field:

2 ‘ e
i K A i
> Z § ( -m,Cyf day g;;da,  + —= A, (q,)da, ) , (1.11)
A=1
'(CZLI "0 L d:f:',' 6
0 -1 0 0
A - 0o ©' -1 o (1.12)
i 0 10 0 -1

LT Thls can be done by examining a simple set“ of deterministic systems described
by action (1.11). The derivation can be done with the aid of the method

. . 1
employed in [2] for free particles. It turns out”that 3 and 3 denote the ©/10
o a o

; 2
., Lagrangian coordinates, i.e., the set of six values 3a gu o=1, 2, 3 de-

fines the number of the system int:the set. Thus, the writing of S . in form

cl
. (1.6) is not an arbitrary construction. ' It is noteworthy that examination of

simple set inevitably leads to S = 1 in (1.8). Furthermore, n is an arbitrary
‘function not only of ty, t, » but of x. In this sense discussion of a nonsimple

set and the discardingvof the condition S = 1 in (1.8) are a generalization of

!
*A simple set is defined as the set of surfaces of state S in which surfaces S
do not intersect (see [2]).



; the restult-of (1.11). We will not discuss here the need for introducihg the

'non-simple set. This is examined in [2].
l" ; : EERPE ‘ .
N The introduction of action (1.7), in contrast to (1.6), is a special

,éssumptiongif(r;7) takes into account the non-determinancy of motion of a

tSeparate s&stem. The result of this non-determinancy is ''diffusion'" of surfaces

.. S from region of space to another. The rate of this process is proportional to

AN

=0

fthe gradient of density jab of states of the systems. Accordingly, the
?Laérangian is proportional to the square of density gradient jab, and the pro-

'portionality factor is }-12/8MA (t is the Planck constant). Squ essentially

: : 04 (0
contains the gradient of only one component jcl)(Z)
|

D 04 (0
 tivistic case at hand all other components are much:less than j(l)(z)

, Since in the non-rel: = .®
0, 0
Q).

'Thus (1.17) is a special assumptiof, the validity of which should be borne out

|
“by the results.

p. We will now consider that in view of n = n(tl,tz)

;- B an ) i _ |
Tl(a) - - = 0, a = 1, 2,‘-_3, A = 1, 2’ (1.13)
A aqz

iand with the aid of (1.3) we will write the action in the form

'
1

S= 5t Sy + S (1.14) /11
o0y, 0 a,, 0
y Sm = Sm [J ’ Pa’ a |~ {mA; '(0)( 0 ) n(S(—)A') )
A=1 sj’A 3-A
: (1.15)

2 [ Aely .
- -Z p(li;) ”(g) ((1 - Sap) I roA N P—— )}6 (-Cyd"
— Sy

I

R YRG!



8 n(ty, t,) yields equation
|

N

)

. 2 i
S .ab] e W) B
Sy S ]2 [ 2 OFIRMCARIECES (1.16)

A 0L 0,0

' R ’ a a
s s s ab a2 99, 9qy o
I gu “gulj |7~ am ©5¢.% 3 n'(3__A)
A RIS AS
j
e | B
L | S - oyl (1.17)

| . o .
' Variations of (1.14) in terms of P, with consideration of the arbitrariness of

P
Vol

s” i O 2. 2z f
10 o 25 , 37 —=-0,A=1, 2. (1.18)
. . .8t iy 9,0 . 93t i, an 0, 1
= Q) MGy ) ")
TWe will introduce the definitions:
.
0,.0 0 0
1 G) (16D 1)
172 o L0172 o .17 %82
P =1 , POy =] » PO, =] (1.19)

i s . .ab . . . . .
Variation in terms of j with consideration of the arbitrariness of n(tl, t2)

'yields the relation

e
p(a)= onz +'—%-Aa(qA), A=1,2,0=1, 2, 3, (1.20)
o . :
- e : . (1.21)
: 0, = -m A°A A2 1 . 32/ A
o (n) A—s— *5 — %, v 2 Bplay).
5 A P B‘Aan
»



|It can be said of relations (1.20) and (1 21) that they are derived from the

:correspondlng relations for neutral»partlcles by means of the substitution

|

. (S

! A
a 1 P > P *oAr(q).
- - () cA) ¢ AT

We will renumber all §: with the same index n = 1, 2,...6S + 2 (31 =T,

sz = n). Variation in terms of §n (n -3, 4,...6s + 2) yields the equation

2
33 . . .
8N -0 (p i " 0. BT o >= 0, (1.22)
L A,B=1 G ) Q) (B) )2 '

o L N . .
LAY v o [N Ll

n=3,4,...6s+ 2.

~forn =1,2 (1.22) is an identity and therefore is valid forn =1, 2,,..6s + 2,

s
~
-

A

We will assume for brevity . o o

— ' (1.23)

;- BTaanb
Using the identity
d 937
=0, (1.24)
ax @ T Bnb83
9
65+2
}E: 333 3 .o g2-ib-, gD sac | c.ba (1.25)
n,d.-°da " a’ a
n=1 93t _on, 93 S B
c b n,a
“we transform (1.22) to the form
3 .cb .cb -
anC £+ 1/2 naJC £, =0, 8, b, ¢, - 1,2,..8, (1.26)

[RRTRGS



'where
ac a, ¢c=1, 2,...8. (1.27)

After the transformations (1. 26) acqulres the form

P

3p a) 5 5 Cap (Y
| PE PR PG P W
! A . B B B’ 3

. - + o <7 ,A,B=1, 2.

-

Equation (1.26) yields the solution {. .%<, « ooz

fac = aapc - acpa =0, v (1.28)

although (1.28) does not necessarlly follow from (1 26). It foclows from (1.28)
that grranlon

p.=2—, a=1,2,...8, (1.29)

‘where ¢ is some, as yet arbitrary, function of x.

K We will examine the case of a potentlal solution of (1.29) subst1tut1ng

}(1 29) 1nto (1.20), (1.21) and dlscardlng o A DOW we obtain

bl g e ‘ e
1 Y A oY’ A
T I | Ta o Mald) R (1.30)
A A | 9q 3q
; A A .
e 2 2 e
. - gm - au/pa B 5A AO(q“)’ A=1,2
; A Vo 8 "9q, X
‘s The identity
. 2
3 . 2%,
N ax 9T Bn o (1.31)

b.



?is written with the aid of (1.18), (1.19), (1.20) and (1.29) to form equation

in the form

{ -

o

eA‘H

= 3p i ) [ p oy
- ; a m

j atA . BqA A 3q
, HE)
. The values j

[
I

o

A

“m,c

A

remain undefined.

SEale

6 Aa(qA)] =0, A-1, 2.

(1.32)

They can be determined by the relation

a, B :
(G _ _aB h2 32p 1 3p dp
) = P91% T Tmm e. 8 = p>a -8B
172 5 aql an

(1.331

~Then in the absence of electromagnetic fields the laws of conservation will be

‘satisfied:

“satisfied.

.ab

R
9%

=0,a,b=1, 2,..
a . T

-8,

tin the case, however, when Ai(q) # 0, (1.34), generally speaking, is not

(1.34)

o We will multiply (1.30) by - /E'exp‘(iw/ﬁ, and (1.32) by ih exp(iv/h)/
./ (2¥p) and combine them. ‘

We obtain

(1.35)

(1.36)



i' It is obvious that the two eﬁuations (1.35) are always compatible. The
3 fequivalent equations (1.30) andt(l.§2) are alsq always’compatiblef

S Equét;ons (1.35) describe evolution of the function y simultaneously in

J t ey ro . « . . .
terms of two times t1 and t,. We will now consider the non-relativistic point

of view, i.e., we will discuss the behavior of the set at equal times tl = t2,

iz il.e., in seven-dimensional plane P7 of space V12‘ Carrying out the transforma-

tion
.
. t, + t t, -t
1 1 2 1 2 ‘
Lo ts = 75—, (1.37)

l
)

2 e gl i
S .. Y A h2 3 A
ih T*E{Ej“o(qA) * 2m, (3 a ~ Fc Aa(qA)) 8 (1.38)
. A=1 a
S 1¢e
) a A |
S ’“(‘a"a - R Aa(qA),)}w - 0, -
ap
O Y 2 A-1f A ne. 2 g,
Cihgre 0 L) { < fol " o (a " The fatqy) ) X (1.39)

r.' N
g

T Equation (1.38) is the Schrodinger equation for two particles in an external /15
yélectromagnetic field. It contains t as a parameter. If the function vy is
"known for t = 0, T = 0, it can be determined for any t and t = 0 by means of
.iny one equation (1.38).
The state of the system in plane P7 is depicted'by a line and not by a

‘two-dimensional surface. Therefore the density of states is depicted by the

=4 !?ector jl, (1=0,1, ...6). In the coordinate system yO = t, y1 = qx,

Tape
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f—jl has the form

oo

“U’

' ._v.__,

—

—tion (1.32) follows the law of conservation

2
s = 04

den51ty of the probability of detectlng
—the second particle at point q2.

:flow density.

N

Cover Pa?; Title

. _This can be proved by the method employed in [2].

—It follows from (1.40) that with the appropriate standardization j0
ver.Pac¢

The other components denote the probability

—prescribed by the equations of quantum mechanics!

(1.40)

Vatl /’"/ l |

From the laws of conserva-

(1.41)

is the

FheC I FEt particle at point ql, and

They are selected through the wave function so that this is

|
|(4) R
a
|

25 |

—2. Set of Interacting Particles

— We will consider now the case of two charged interacting particles in the
30 :absence of an external field. This means that in action (1.2) the fore-

35

4o

L5

—-potential acting on the first particle

|_conversely.

In determining the Lagrangian of a
—the fore-potential Ai
:of the particles. It is also necessary

—that describes the free electromagnetic

e

Strictly speaking, we shoul
—freedom related to the electromagnetic field.

t-relativistic case, where radiation is completely ignored.

in (1.11) should E

_it may be written in the form of equation

d take into account the degrees of

I considered only the non-

system of two interacting particles
e consideréd as governed by the charges
to consider the term omitted in (1.11)

field. 1In view of the Maxwell equations

: : ut /(Dl-a )(bﬂ' )")"“' = (2.1)
~ ! 2
~ L =‘212.J I(y,)_?‘dr
e Azt o

— :"‘L_....
L2 ] 12
Even Roman 0dd

is governed by the second particle and |

16
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" In consideration of this term and the Maxwell equations action (1.

—relativistic approximation (¢ »Pxjeatquitféslthe form

11) in non-

[ﬁe will transform relations q; = qi(r, T

~functional of 7, 3, n=1, 3, n (qk). )

o |
- Cover Page Title |
- f S T g l (2.2)
— . Fa 7. 91 KA . a9
- ! Z ’(( " q‘/ ’ 7‘ = —I‘ » i
24, ar
- |
- RNt R g - o5
: We willucgn§;ger a_simple set, consisting of systems described by action
-(2.2). Let'IJ {3,.1, 3 3] 3"5 f Paseng@g;@ge the systems of the set and
_QX = qX(T, ,n), where n is a parameter acquiring the same value of ¢ for all !
_systems in the set. Then we have the action '
| m , @ Y
- 5[9‘ J’ ( ) . u 7:.)5(7 C)d,dn/ B
- CoF (2.4)
B 4 ﬁn alg
B ' "“"_.__,_», A
i

,3) and will now regard (2.4) as the

ts extremals can be found by varying

;the action
35 L I
_ S 5[3‘] ZJ"’* {900
B Axt (°)c
le (2.5) |
o [~ y |
- ! R, J(a‘l )6(7 C)d X,
Lg [Mwhere
- r_- - -; T ) T
- ] J'“- LIV ]_ AT, 3, 3..3.»3 ) (2.6)
- | 27,2y, - )(x,x,‘x.x", x%, % %7, x?%)
50 [ P LA £ SR R Al Tl
I_ - e e e
L ] _13
Even Roman 0dd

|>
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[ Variation in terms of P, and 3> y1%1d5 the former equations: (1.18) and
} -

35

4e

.’4 5

50

-

“and x2 as given by the relation (1.2). [
— Page One Title

—~term

. . - | e

: S i J‘ 6,

e ' . = - : 4)(3-4 J d(

== a . 2’ J ?‘ (7 C)

: Thus, a quantum set of two non-relativistic particles interacting by
—Coulomb's law is described by thgyaction. source

- S S past] = ses, +S.u'

- o r(hnl)

- Equataon (2.5) is the action for a|set of particles interacting accordlng
:}o Coulombf's Law. We will makecsome generallzatlon in the sense of c?nver51on
~from (2.6)] to (1.8). We will compare (2 5) with (1.6). Then, con51dqr1ng
:(1.3) and (1.13), we conclude that part%cle interaction is described by the

(2.7)

(2.8)

12°

_where Sm’ S Squ are defined by expressions (1.15), (2.7) and (1.17),
“respectively. l

v (1.22), respectively. Varlatlons in terms of j yields equations

1

!

1

1

(—

—

-obtain, instead of (1.35),

- NASA

(2.9)

"Further, repeating all calculations from (1.18), (1.20)-(1.22) to (1.35), we

Loiitt 2 o v e e —"— o K L b 4 2w A < 5 AATe s 7 s e s ek 7% o X Sty < e i« . < o e v n -

(14 -

Even Roman
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 We obtain, instead of (1.38) and (1.39),lT
i

“particles interacting by Coulomb's law.

-

Finally, the action for a quantum set of interacting particles in an

oo s

| external electromagnetic field is written in the fomm

e T ————e

: SR S S Sy S

b

- , A A : . .
_where Sm, 812, SmY, Squ are given by (1.15), (2.7), (2.16) and (1.17),
Tmon-relativistic particles in an external electromagnetic field can be ex-

= . .
I_tracted from the equations of motion fOf such a set,
- NASA

1

B , S

_ 2 X : 2y Cied

N | (d‘; - Ll )y s ._‘.. L 2 =0, "A=1,2 (2.11)
a 24, 7/ dm, ‘)9‘ ‘a" v v 4 ’

- ' T Cover Pade Title’ | - ]

B Both equations (2.11) are compatib%e, since equation

L

= . - e — S

- . e Co T

N R A L P T (2.12)

N - 7,,‘ 27‘ Ry .o -\‘9. R L P

(2.15)

l_respectively. It is obvious that the Séhrodinger equation for two interacting

” Cover Pag¢e Source
N 1
N w3 ga
- ,tzw A 42 R LS TR
| 2t< c "‘d. At 3"'. 7’4 390 W N
. € ) . ) - : .
- ST dw e a. 24 -;T" P AN
- Co Lt ¥ ~, ' —-—-—L— = O
- e ?5;” Gy T ] e
| - B et el - :“——~—~~—-‘[- e — -—-r—w =
- Equation (2.13) is the Schroedinger equation for two non-relativistic

CER LD e e aon AT BT M AT A e o ok b A e M A S e At
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-3, Energy, Motion, and Moment of Quantum Set

= To a quantum set, by any dfﬁ%ﬁidm§§éikilecan be made to correspond to

|_energy, motion and moment. These values can be determined cannonical}y from

—the Lagrangian. Let action (2.0%9ebe’@eFintd @s the integral for somé zegion

& of space V12:

- A of :.
L. f/g:‘ g’L - x’; : (3.1)

i ——

|:We will subject coordinate X, to infinitesimally small transformation

rC-_O_\Le_lf‘.qp;‘.L‘JA_ Calirea. . - l
\" x> X°+‘8Xa. j (3.2)

a 0 | | L |
_In the case when 8x = const transformation (S.ZD(§|Fuces variation of action
[ ——
—of the form [ |
S S D !

|

(3.3) |

:where I is the seven-surface bounding space @, and dSa is an element of this I

!
—-surface. Here ’

- i : YA : 9
- LTS =S5y e = Al
B ) L - y na _ : (3.4)
:where I

- : u = —
_ ay= [ Pas 3L, 2, re ~2 (3.5)
- . ~-~-;.;._..'_~._, _— e e mmm e e e, ,,___,_A
i~and summation is done in terms of allNﬁ?ﬁices that enumerate the variables that
'jhave to be changed, including n, the fact that the left-hand side of (3.4)

L6 C_] —

Even Roman 0dd
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_system, described by action (2.15),

i
:can be written as the convolution of T;’ Ne is the result of thesspecific form
—of Lagrangian determined by relaﬁd@hsomd.HSQLe(2.7), (1.16) and (1.17%.
= In thle case when base Q is boundedgby two surfaces t1 = T1 = const and
- _ _ Cover P lltle - .
_}1 = T2 = |const (T2 Tl), by selecting n( 1’ ) t, - tl’ we obtain for
(3. 3)
-
B { " T ) OL70) n 2+ - e T
- ’ 86 - - JT(?/(:}J'x‘di ag, + jT(,)(a)yxsdé o3,
~ ( § A, ‘ ! ’ (3.5)
- Tet,T, - i,-t,.T .
- | d; =d9‘ d?‘ d?‘ R ) A=(,.2.
L.. [ - . R ,_.,~]_ —
B Cover Paée Source
—Vector
- = [T g3 2 f . |
- Goo= [T a5, < (T ey, b=tz 4 (5.6
[ Trys s opaTt o I B
“plays the part of the energy-motion vecTor and remalns valid for a set of fréee~
particles. Tgc plays the part of the energy—motTon tensor. The fact that this
L_tensor is of the third order and not the-second, as is usually the case, is
~related to the presence of two times.

Calculation by equation (3.4) yields for the energy-motion density of the

|
[

L [' “'*'“'*—“"V'h—
r T T R \
L - l S A (3.7)
CWhere P is given by relation (1.20), and equation
~ () l
(" n m U: ‘»)A‘ + LA 245 + A ﬂ . A 'e-l 2

! : — L — ~ - 3.8
N BT T am g vy T E BT (3-8
- NAJA
- . N e
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tWe will raise the lower index in (3.7) with the aid of five-dimensional metri;]

~tensor (see Appendix). We obtainadn Gaugéiihvariant form l

— oo _.Lover Pade Title ___ 1 l

- e s e

- ST mp .

. ; l 5 (‘) 0 tlga x z .. . o .

- , ¢ . ( "——f—li‘ - 55— L __-b ‘/_,8_ R €, & )f (3.10)
Lt ' T m « o, P o

r . S i;__ﬁ‘_'_gé ??A ?7/! 2 kn‘

B Examining in like fashion transformation (3.2), which describes infini-

~testimally small rotation in thg,plane const of space V we may intro-

T atj'A bOLn
[“duce the moment of motion:

- | | ‘
: ( ,M:’, : fﬁ,r,CA}(Aj d% p/?‘ . } (3.11){

: T :

“where in the given case

_ { vs(,}(.}; {9,,,,«@; ‘7 .,us(,/j/

We introduce the operators

B ! /’ b "y

— J P

(3.13)

l
[“We will assume that condition (1.28) \il/%(/s\atisfied. Then
NAC

-

L. S S

-

[18_ ] 18
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< my,

N - P -—f*r'ﬁ"’% d?:"’?u

- | SOSH 2 e ~
+ 46 )*dquya ’ i (3.15)

i

. (3.14)

— ToTTTT ¥

[ where y* is a Vglge_gqmpleg_cpnju@ate to ¢, which is defined, in turn by

- 0
D, )
~p A c2P A , MaB

A remain in force. Since

- | f‘f’w (‘b l‘) 74 P )) 4 "9.. "9:.-" | \ (3.16)

Cover Pac¢e Source.

—In the case when the particles are uncharged (e = e, = 0), all values

P

2

o
(A) 2|(A) MaB

s ?(4”) A (A =1, 2) are

s

“regarded as the density of the probabili

71

. NAY

- Equations (3.14)-(3.16) cointide with the rule of calculating the means

—of these values in quantum mechanics if|y is defined by the relation

-— {'/£1 v dg d‘ =f |

" : j* LA Tk (3.17)
e

| When this condition is satisfied in view of definition (1.19), o = y*J can be
ty of detecting the first particle at
QSI,p01nt a; and the second partlcle at p01nt q2 For this reason the mean value°

“of the arbitrary function F(ql, q2) is determined by the relation

e e A % e = 4 e e o o e s o et ]

C L]

Even ° Roman

“additives and related respectively to spatial dléplacement, temporal displace- i
—ment and spatial rotation, then according to the|statistical principle they ca@
~be regarded respectively as the mean motion of-the eighth particle, mean energﬁ

_of the eighth particle and mean moment of the eighth particle.

19
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The brackets denote the mean valoVcr Pa

-4

f*" F(G.9.)¢ "71"’7

e Title

" Stationary States of Quantum Sets and Their Significance

- - T

—external magnetic field.

. .The state of the set depends, generally

~in variables (1.37), on t and t. We wi

= 2

_tl ) or for T =

- 2wy,
- '31“ . >
— Cover Pag

0, which is equivalent.

“stationary-if it_does not-depend on_I_when_m_;_Oviﬁﬂk

the fore-potential Ai may also be made stationary, i.e.,

speaking, on two times t

Let the elect%omagnetic field be stationary.

1

(3.18)

We will consider a quantum set of two interacting particles in a given

Then

(4.1)

and t2, or

11 analyze the set for identical times

i
We will call the state of the set

- gt
s o .)

{ : »

— |

o .
b =1

where| T = 0,

,a,... 4.

| Conditions (4.7), in fact,
~(1.19), (1.20), (3.8) and (4.1), is the
- * ]
_4.2).

f—

We will find an equation which the

—assumption ahat (1.28) is satisfied.

o ( 0 = Cde

are not independent,

in the second,

(4.2)

in the view of

consequence of the first condition

stationary state satisfies in the

Lo «p,<9,.

93 ) + ‘Pi°(t)

From (4.2) and (1.29) follows

(4.3)

|_(The function of T is not indicated.)yaddding to equation (1.30) the term

- -
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‘elez/(2R12), we write them in the form ‘

: Wt e ae sy
. o .Z,{ 2m, ! 2] f"”“”"//%:ﬁ
: +_ﬁ_f'_1' 2%

€a
—n A lg( f -_
- img 75 agiagr e W

“The right-hand side ééeé not depend on t, therefore,

_on t, and (4.3) acquires the form

[,
- |y ha ) - K

. 1 RS - -
l

ing p to be independent of t, wéosbtainge Source

_ (4

12

- .- - S e = B —-~—T——-'—-—-—*~~———»_-
9y/ot also does not depend

__where H' is a real constant. Comblnlnglthe two equatlons (1.32) and consider-

- f< D _ &
- J “, {m ey emc. '4(94)f—0 | /

b

B |

L 4H:‘Zd{;—1;;/0(‘/0

e e e

\

( —_—

i . - ( - r—

%(9..%, t) = ¢
_ T NASA

- - g€,
_ , fcf‘ﬂ.(?,)f‘#*-; u,=/14,.

26“ 4, (?‘A.)f *

~It is obvious that the converse is alsolyalld i.e., if

A - -»
'f'a (‘I'l) q‘) )

-(é‘AL(%{/+

(4.4)

(4.5)

(4.6)

— Comblnlng (4. 4) and (4.6) we obtain for the[function ¢ from (1736) the ™ ~

(4.7) .

Thus, the problem of finding the s%ationary state of the set is reduced

~

(4.8)

(4.9) \

ab

e

i

i
|
}
i
i
|
'
'
I
|

i
|

4

_to the problem of seeking out the Elgenfunctlons{and corresponding Hamiltonians|:

[ - L]

Even Roman

Twhere . (a:}, az) is Eigne:fy'uric‘tioﬂH with eigenvalues H', then the values j



o |
| constructed from ¥ will not depend on ;] Actually jab can be constructed from ‘

- A
-vz and p by using equations (1.1999andn{17133)¢ For p and vz we have
L - - . - -
[ J’D': \.Uo ?.:91) 4’0\?1'93) ) ‘
B _ | b (4.10)
- «_ 2k 2 -(9,3 | '

]0 B U‘ e h:‘ -b?" ’Z}j ‘/J ’9 ‘.941) -+ ‘_:c_l ﬂd(q") ) . ;
. - 4 Yo (405 9,) , (4.11)l
i e - |
ﬂi.e., p and v are not functions of t.

15 A |
: The traditional statistical interpretation of quantum mechanics [4,

- [—chapter 3, section 1]]can be derived from the following two hypotheses,

20 1. If to R corresponds opegatorpRsethenrte f£(R) corresponds operator |
“ER). :
- i
— 2. The mean of any value of R in state y is defined by the-relation 1

25 | N L :

51 [ e |
-

30

35

Lo

50

- L

—~the wave function depends.

—

The integral in (4.12) denotes integrat]

— The validity of (4.12) was derived
:the additive values and arbitrary functi
—(4.12) for the arbitrary value R cannot

Moreover (4.12) is incompatible with re

A

(4.12)
|
r |

ion in terms of all arguments on which

5

from relativistic statistics® only for :

Lons of the ¢oordinates. Relation

lativistic statistics, since it follows

and a certain pulse [5].°

_possible to explain experimental data si
~statistics? I cannot answer this questi

“only a few comments.

—from (4.12) that a particle cannot possess simultaneously a certain

—to what degree is (4.12) essential for explainingr.experimental data

coordinate ,

|

In this connection the following question arises: |
and is it

imply on the basis of relativistic

lon conclusively here and will make

in this article.

T call relativistic statistics the concgpt advanced in 1, 2] and developed

r.

L.
[ 22
Even

]
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It follows from (4.12) that measurements can given for R only a value

—

—coinciding with one of the eigenVadwueSnoflopéerator R, corresponding to R. The

[¢]

:fact is, hlowever, that it is possible to measure only those values which commut
—with the Hamiltonian of the systemgrahd:th€istate of the system being|measured

[ must be stlationary. This was proved by|Von Neuman [4, Chapter 5, section 1).

B Actually; in the framework of quantum mechanics measurement of any value
~R pertaining to system S, with wavefunction w, amounts to some action on system
[S. As a result of this actlon Hamiltonian H of the system is measured so that
—the values of R begin to commute with operator R and state y becomes a

“stationary state, i.e., the Elgenstate‘of operator H of the system. This occurs

—because no measurement is made instantaneocusly and state ¥ must be such that |

o Cover Pace, Sour

rstate. But if operator R commut s with| the Hamiltonian its Elgenvalueﬂ R* may :

- !
be used for numbering the Elgenstatejof the Hamiltonian,

Relativistic statistics states, on|the othetr hand, that the stationary

_states can be found as the Elgenstatesipf the Hamijtonian. This was proved

[ for the case of two interacting partlcles in an electromagnetic field, and is

_.apparently valid for other cases. Therefore, the R' of any measured value R i

“can be regarded as the 'number' of its stationary state, and it can be deter-

-

.mined by identifying the stationary state. From this point of view any
measurement can be reduced to identification of the stationary state of a

__quantum set. The stationary states here play an exceptionally important role.

- Suppose, for instance, an atom is placed in a magnetic field directed

Calong the c-axis. Operator ﬁz of the pLojection of the moment onto the z-axis
—commutes with the Hamiltonian of the atom and the energy levels are numbered bﬁ
Pthe.EignevéTdégiof operator &z (but not by them alone). Suppose the atom, !
:unde; the influence of excitation, changes from one stationary state y' with
M, = M; to another stationary state y'|with M, = M and emits a photon. By

r.recorcling the frequency of the photon it is possible to identify the levels

“between which transition occurred and to determine M; and M;.
— .

- NASA
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[ 1t changes little during the t1me of measurement, i,e.,, should be the statlonary
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Thus, in the given case the moment
_extent that it numbers the statiepnaxyps
“measuremeﬁt amounts to identification o

—as successfully as quantum mechanics.

o

If two particles are identical, th

:done in [2], leading to the relation

w(t, 4,9,

..will be shown that relativistic;statist:

Generalization of all results to t|

— Daer
_an easy task. Cover Page

of motion MZ is measured only to the
tate.1eIf it can be shown that any real
f some stationayry state, it théreby

}gsTp@peéxplaln experimental facts just

en their identity is considered as is

4}(?)9'2’9'1)‘ ’

(4.13)

he case of n interacting particles is
Source

’(L}Ill

NA

Roman

SA

.

|
|
;

|
|

Odd

i



10

20

25

30

Lo

50

1

action of

PagAPPENDIXt le

|

GAUGE- INVARIANT FORMoQErENERGYTMOTION TENSOR FOR PARTICLE
IN ELECTROMAGNETIC FIELD

The motion of a particle in an electromagnetic field is described by the

_first means, variation in terms of q,,

_The second,

g g |

The energy-motion tensor can be calculated by two different means.

yields equation

T % - 98 2. 2 L)
in.,(') [—9 'Zj"x(x) g A
cannonical, yields
o C By o e -
&= 2 5 et Iit,
- ST SRR AN
. . [ - .
]
Roman

— ey

!
(A.1)

(A. 2)

(A.3)

|
l
|
I
—
l
!
!
i

E //;/ — j: Jf j’ J’L V;} ;f‘x i ‘

- TSI [ T gy

: S

- ‘< 7 I_ 7 , 4 . .
:where X" are arbitrary curvilinear coorélnates in the prime space, q;, is the
[metrlc tensor, and

(a4

!

+

The

(A.5)

(A.6)

25
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““where uY are variables, in terms of which the action is varied for obtaining
-+~the equation;?of motion. Page One Title
— The first method yields, respectively, for Sm and S 1
- Cover Paj% Title |
4,. r T. » _-ﬁ
- T () = me 9(}7(} L‘r(t](t) X)
P )
/}J(T)jjs(x)q (z. i /9 . / (A.7) |
and Ty is the root of the equation JA
— [ e e TTm ot oL - .
- ‘] (“’) -x'=0, / (A.8)
B L —or— - :‘ .
- - S
- '7: ‘“(X) = . _1 ?[F ‘;/F’- _ 1 t'xF_J'SF / A9
_ o 4% (- -/ .qj , jsl- (A.9)
= |y
~The cannonical method, whereas, ylelds [
B me :1 .+
- B 0= ————-—L———q xe f Eh g f ‘f—(i——.."‘/. (A.10),
_ ) ‘/7 s 9 19 |
Ll - i
— : !
- The argument L is omitted everywhere l
[: [ . - . P L. . . - -
B _ 9._ « (%) * Jue T )~ L0 (4 FC) s 4’5 4,9 F** ! (A.11)
“From the Maxwell equation
- S
- 9, F ‘}? 9" i(z_ji'j (A.12)
- . 19°
_ - A
[ follows
L (,' h(rr’ R . ) — _
— . : . ‘V+'r t = ¢ _’ “
L 1.. {/(.(_ t ) % *+ 6)6 L s 43 2( (ﬁl( F ,)' ‘ (A 13)
e i e L - N s il e e ]
[z ] —
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Thus the different methods of determining the energy-motion tensor yields

—

_the same expression for the complete énergytand motion, but the energy is

“distributed differently between the particles and the electromagnetic |field.

B l

B If, however we take the po?ﬁtro%aglew [6] [9] that the real spaée time

. 4
is bi=dimensional and closed with respect to the fifth coordinate x ', where the

t?ifth coordinate is spacelike, and denotes that the corresponding cannonical
Lpulse Py is the electrical charge, expressions (A.7) for T;k and (A.10) for

-1k . . . . . . .
T " are equivalent. The fact is that in such five-dimensional space the metrlq

~tensor yab, A,B =0, 1, 2, 3, 4 has the|form

- e iv ‘4 he ‘x -
L. . ! = » : EX == ﬂ Q '
£ -4 s e (A.14),
B “y ' o -2 . .
i X =-,+ﬂ¢'? lk Q-) L, N %,’)2,3' |
where Q is some universal dimensional censtant (energy x charge 1). The

..is given by relation (A.10), @m14 describes the fore-current ard has the form

|
t
A— *1 i |
‘_cannonlcal energy-motion-charge tensor is ot the [form { ‘ij @" 4}, and'@; E ‘“j
1
!
{

! pom— :
N e - _LL_J ‘ (A';lS)i

L o 4%

YR
» i | AB
_By raising the second index of © A (A=0,1, 2, 3, 4) by means of v ', we
[—obtain
[~ ; TN 4 ué ‘ L) ¢ N ‘
- &m h eml +J( 9:-4' =7'm" . '
'_ S « . ___ __ ' ; ) (A.16)!
- I
“Thus, from the point of view of equations (A.7) and (A.10), these are two
_different forms of the same expression.| (A.7) is gauge-invariant expression
Cand has an advantage over (A.10). InNEygh five-dimensional interpretation,

L — 27
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—generally speaking, the gauge-invariant|tensor components are those whose
| _indices, acquiring the values 0,p49323né;ngpecontravariants, and those acquir-
—ing the vélue 4 are covariants.
= Cover Page Title
L
]
‘-
B Cover Page Source
— i(b")
— - -
-
- |
L
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